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ABSTRACT
Multimodal dialogue systems (MDSs) are needed to allow users to
converse with virtual agents that use natural language by sensing
the multimodal behavior of users. One crucial step in the devel-
opment of an MDS is measuring how well the dialogue system
performs. Though previous research focused on the user satisfac-
tion modeling from linguistic modality in text-to-text dialogue
systems, the user satisfaction is observed by not only spoken dia-
logue contents but also the acoustic and visual nonverbal behaviors
of users. Multimodal social signal sensing provides a solution that
automatically measures dialogue systems based on subjective evalu-
ation. With this background, we proposed a multimodal recognition
model of the user using sequence modeling algorithms (RNN, LSTM,
and GRU). It is a novel challenge to recognize the user satisfaction
label at the dialogue level. Each label was annotated by the user
based on the overall dialogue. We extracted both verbal features
and nonverbal features at the exchange level (the unit is a pair of
system and user utterances) and analyzed the contributions of multi-
modal features and unimodal features to recognize user satisfaction
labels at the dialogue level. We used a multimodal user-system
dialogue data corpus with user satisfaction labels at the dialogue
level. To validate the recognition accuracy of the proposed multi-
modal modeling approach, we compared the proposed method with
two models based on human perception by external human coders
and the system operator (called “Wizard”) with whom the user
talks. The experimental results showed that the multimodal model
achieved a better performance in both classification and regression
tasks. The results indicated that the performance of the multimodal
model was higher than that of the human models.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; •Computingmethodologies→ Discourse, dialogue and
pragmatics.
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1 INTRODUCTION
With the development of natural language processing and speech
recognition, spoken dialogue systems, such as those of Amazon
Alexa, SIRI, and Google Assistant, are used in many fields. There
is great interest in developing non-task oriented dialogue systems
such as chatbots and open-domain dialogue systems [12][22].While
improving the quality of the non-task oriented dialogue system is
important for the user dialogue experience, it is not easy to evalu-
ate how well the system works; therefore, an automatic evaluation
of whether a user could satisfy through the dialogue experience
is crucial for developing and improving dialogue systems. Two
unexplored problems exist in the current satisfaction recognition
models. First, almost all previous research [8, 24] has focused on
user satisfaction modeling in text-to-text dialogue systems rather
than multimodal systems. On evaluating user satisfaction in multi-
modal dialogue systems such as embodied conversational agents
(ECAs) and social robots, the satisfaction level is observed from
spoken dialogue contents and the acoustic and visual nonverbal
behaviors of users. Second, most previous work [6, 8, 23] recog-
nized satisfaction label at the turn level (per utterance or exchange)
to ensure natural interactions. However, a user essentially feels
satisfaction throughout the whole conversation, thus, the system
designer needs to analyze not only satisfaction at turn level, but
also the overall satisfaction concerning the whole conversation. We
define overall satisfaction as the “dialogue-level satisfaction”.

This study presents a multimodal model to recognize user satis-
faction at the dialogue level by using multimodal features observed
from users, which is suitable for evaluating non-task oriented di-
alogue systems. The multimodal features extracted from each ex-
change (a pair of system and user utterances) are input to each unit
of the sequence models (RNN, LSTM, and GRU). The output is set as
the dialogue-level satisfaction annotated by the user who has talked
with the system. We utilized a novel multimodal dialogue data cor-
pus to construct these sequence models, including dialogue-level
(overall) satisfaction labels, exchange-level sentiment annotation,
and multimodal data including spoken dialogue transcription, audio
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signals, face images, and body motion data. We used five feature
sets to recognize user satisfaction. Meanwhile, this study analyzes
the contributions of different features to user satisfaction.

To validate the proposed methods based on the machine learn-
ing (ML models), we compared the performance of the proposed
model with two types of human methods. The first method is a se-
quence model that recognizes dialogue-level user satisfaction from
exchange-level impression annotations (Human model (1)). The
second method, the system operator (called “Wizard”) directly rec-
ognizes the dialogue-level user satisfaction (Human model (2)).
The main contributions of this study can be summarized in the
following three aspects.
Multimodal user satisfaction recognition: This task is unex-
plored, and it is a new challenge in the multimodal human-agent
interaction domain. We proposed a multimodal approach utilizing
sequence modeling algorithms to recognize user satisfaction at the
dialogue level in multimodal interactions. In this study, we com-
bined audio, visual, and text features to recognize user satisfaction.
We demonstrate that multimodal features performed better than
unimodal features in Section 6.1.
Comparison between the contribution of multimodal fea-
tures and exchange-level annotation: Many studies have fo-
cused on proposingmultimodalmodels for recognizing the exchange-
level sentiment label, how exchange-level label is correlated with
the dialogue-level satisfaction is still unclear. We first explored the
relationship between exchange-level and dialogue-level annota-
tions. Then, this study used exchange-level annotation scores as
manual features to recognize user satisfaction and compared the
results with those obtained multimodal (automatically obtained)
features. The comparison between the two feature types is described
in Section 6.2.
Comparison between the ML models and human model: To
validate the effectiveness of the multimodal ML models, we com-
pared the recognition result of the ML models with the user satis-
faction score annotated by a system operator (Wizard). The compar-
ative analysis in Section 6.3 demonstrates the challenging nature of
the task and the contribution of the automatic multimodal recogni-
tion technique on estimating user satisfaction.

2 RELATEDWORK
Intelligent conversational agents have become widely used in daily
life. Measuring the performance quality of a dialogue system is a
critical component during the development process. Initially, some
researchers used the dialogue efficiency and dialogue costs, which
are related to the length of the dialogue or task success, to measure
the performance [13]. However, there is no task success information
in non-task oriented conversations (such as small talk and multi-
domain dialogue) when interacting with simulated or recruited
users.

To develop an appropriate and correct system, recent studies
have focused on user-centered criteria that are defined based on
human judgments to approximate the usability of dialogue systems.
An annotated score, such as “user satisfaction”, is recognized by
using machine learning techniques. For example, Engelbrecht et
al. [6] used dialogue actions as input features to recognize user

satisfaction at the exchange-level. Higashinaka et al. [9] used anno-
tations by experts who observed the dialogue as target variables to
model the user satisfaction. Since most input features are annotated
manually, this method is inconvenient and inefficient for online
applications. Schmitt and Ultes [23] used dialog manager-related
parameters, the semantic meanings of which were extracted au-
tomatically as input features, to recognize the median rating of
several expert ratings at the exchange-level.

In terms of experimental methods, some researchers have re-
garded the user satisfaction recognition task as a sequence problem.
Hara et al. proposed an N-gram model trained using sequences
consisting of dialog acts to recognize user satisfaction [8]. A hidden
Markov model (HMM) was also used to model user satisfaction
transitions in dialogues [10]. However, the experiment has shown
that Support Vector Machines methods that did not use sequence in-
formation were performed better than HMMs [23]. User satisfaction
recognition is a temporal task that should benefit from time-series
dialogue data. To investigate the effect of temporal information,
Ultes et al. extended the set of temporal features to different lev-
els, and the results showed that interaction parameters (e.g., ASR
performance ) at the window and dialogue levels that provide tem-
poral information have major effects on interaction quality [25].
Recently, deep learning techniques have also been applied for user
satisfaction recognition tasks. Ultes et al. [24] proposed a recurrent
neural network (RNN) to achieve improved recognition accuracy.
To eliminate the heavy reliance on handcrafted temporal features,
they presented a deep learning-based Interaction Quality (IQ) esti-
mation model that utilizes recurrent neural networks’ capabilities
to automatically learn temporal information.

Concerning features, all previous researches focused on using lin-
guistic features and dialogue content to recognize user satisfaction
with a text-based dialogue system. In a multimodal dialogue system,
it is well known that sensing multimodal information from the user
is useful in recognizing the inner states of the users, such as the
sentiment level. Recently, many studies have proposed that multi-
modal information including visual and acoustic features improves
sentiment recognition accuracy. The temporally selective attention
model [26], multi-attention recurrent network [29], memory fusion
network [28], and tensor fusion network [27] were proposed for
multimodal sentiment analysis. Hirano et al. proposed a multitask
deep learning neural network model (MT-DNN) using multimodal
features to recognize the user exchange-level sentiment toward
spoken dialogue systems [11].

The main difference between this work and previous works is
summarized as follows. Though most of the previous studies have
focused on recognizing user satisfaction at the exchange level, the
main work focus of this study recognizes user satisfaction at the
dialogue level to evaluate the non-task oriented dialogue systems.
We also present a multimodal modeling method based on the user’s
performance in the conversation.

3 DATA AND ANNOTATIONS
Figure 1 shows the overview of this research. In this section, we
describe the multimodal dialogue dataset and annotations to it.
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Figure 1: Overview of the estimation of the user’s satisfaction at the dialogue level

3.1 Data recording
This study was conducted on two shared multimodal dialogue
datasets 1 named Hazumi1902 and Hazumi1911, in which recording
settings were almost the same [18]. Both corpora were arranged to
record facial videos, audio data, and upper body data and used a
virtual agent called MMD-Agent as the interface to communicate
with participants who were manipulated by an operator (Wizard)
in another room. In this system, the operator could select a topic,
utterances on the topic, and general responses used in conversation.
To shorten the time interval before the machine responded, the
operator was well trained and had time to select the next utterance
while the participant was speaking (approximately 10 seconds).

Regarding acoustic signals and body posture, audio and posture
of the upper body were recorded by a Kinect sensor. The posture
information was recorded at 30 fps. Each participant’s voice was
recorded as a 16 kHz WAV file. The number of participants in
the two corpora was 60, which included 25 males and 35 females.
The participants’ ages ranged from 20 to 70 years, and they were
recruited from the public through a recruitment agency.

3.2 Annotations
The data corpus included two kinds of annotations. One was an-
notation at the dialogue level, and the other was annotation at the
exchange-level. First, the dialogue-level annotations were used as
the target labels in this study to develop the recognition model of
user satisfaction. Second, the exchange-level annotations, including
the user sentiment, indicate the user’s perceptions of the system;
therefore these annotations were used as partial information for
understanding the dialogue-level satisfaction.

3.2.1 Dialogue-level annotations. For dialogue-level annotations,
it is difficult to define user satisfaction based on one criterion.

1 The doi is doi/10.32130/rdata.4.1

For this reason, this study used a questionnaire with 18 labels
relating to the user’s impression of the dialogue proposed in [2].2
The questionnaire measured interpersonal communication cogni-
tion as a social skill. The 18 items were “well-coordinated”, “bor-
ing”, “cooperative”, “harmonious”, “unsatisfying”, “uncomfortably
paced”, “cold”, “awkward”, “engrossing”, “unfocused”, “involving”,
“intense”, “unfriendly”, “active”, “positive”, “dull”, “worthwhile”, and
“slow”. Kimura et al. [17] analyzed the rapport in dyadic interac-
tions (60 pairs, with 120 subjects) and reported that three labels
(“well-coordinated”, “awkward” and “unfriendly”) were carefully
extracted as representative labels from the 18 labels by conducting
a factor analysis. Based on this finding, we defined the scores of
the three labels as the user satisfaction level, and used these three
values as grand-truth values for machine learning. We use the three
labels (“well-coordinated”, “awkward”, and “unfriendly”) as “coor-
dinateness”, “awkwardness” and “friendliness” in this study. Each
label was evaluated on an eight-point scale from 1 to 8.

We asked the participants to annotate all 18 labels, but we asked
the Wizard to annotate only the three labels (“well-coordinated”,
“awkward” and “unfriendly”) to reduce the burden on the Wizard
in annotating the rapport scores of all 60 participants after the
dialogue3.

3.2.2 Exchange-level annotations. The exchange was defined as the
section beginnings from the start time of a system utterance and
endings at the start time of the next system utterance. Exchange-
level annotations were collected to analyze the user’s internal state
per in each exchange unit. Hirano et al. [11] and Katada et al. [14]
presented multimodal models to recognize the exchange-level anno-
tations. Three types of annotations were given at the exchange-level
as follows:

2We used the Japanese version [17] translated from the original questionnaire.
3Though we also conducted similar questionnaires before each dialogue, we did not
use them
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Table 1: Usage of different annotations
Unit Type Annotator Usage

Exchange-level annotations
Topic continuance Third party codersThird sentiment Input features for Human model (1)
Self sentiment Dialogue users

Dialogue-level annotations
Coordinateness (i): Dialogue users (i): Target label
Awkwardness (ii): Wizard (ii): Using as a human model to recognize (i)
Friendliness (Human model (2) )

Figure 2: Example of annotation in a conversation. The An_1 to An_5 denote the topic continuance level annotated per each
exchange by the five annotators.

Topic continuance: The topic continuance label was a degree
indicating whether the topic should be changed. Five human coders
assigned such labels depending on whether the system should
have continued the current topic or changed the topic in the next
system’s utterance. The labels of the scores ranged from “strongly
change the topic” 1 to “strongly continue the topic” 7, as shown in
Figure 2.
External sentiment: When a participant communicated with the
dialogue system, the participant had different sentiments during
each turn. Human coders annotated the external sentiment level
per exchange with scores ranging from 1 (the participants seemed
bored with the dialogue) to 7 (participants seemed to enjoy the
dialogue) while watching recorded videos of the dialogues.
Self-sentiment: This annotation was similar to the external sen-
timent annotation. Self-sentiment labels were assigned as scores
ranging from 1 to 7, which were divided into two categories. Pos-
itive sentiments included “enjoy talking“ and “satisfied with the
talk“, and negative sentiments included “want to stop talking“ and
“confused about the system utterances“.

Based on these definitions, in total, 5373 exchanges obtained
from 60 participants were annotated. The agreement scores of the
annotators measured by Cronbach’s alpha were 0.83 for the topic
continuance and 0.86 for the external sentiment.

3.2.3 Usage of difference annotation. As described in Sections 3.2.1
and 3.2.2, two types of annotations were used in this study. As
shown in Table 1, three types of exchange-level labels were used
as input features to recognize the user satisfaction on the dialogue
level. The details of the experiments are presented in Section 5.2.
For dialogue-level annotation, both the user and Wizard annotated
the user satisfaction labels at dialogue level after the conversation.

Table 2: Pearson correlation coefficient between exchange
annotations and the dialogue-level annotations

Topic
continuance

External
sentiment

Self-
sentiment

Coordinateness 0.17 0.24 0.30
Awkwardness −0.16 −0.18 −0.36
Friendliness 0.07 0.05 0.29

In this study, user annotations at the dialogue level were used as
target labels. We used the Wizard’s annotation to evaluate the user
satisfaction as a “human” model based on Wizard’s subjectivity.
The results of estimations by the Wizard and models trained with
multimodal features facilitated the comparison of the performances
of humans and ML models.

3.3 Relation between exchange-level
annotations and dialogue-level annotation

To explore the relationship between exchange labels and dialogue
labels, we used the Pearson correlation coefficient to calculates the
correlations between dialogue-level annotation and the average
value of all exchange-level annotations in one dialogue. Generally,
it belongs to weak correlation when the correlation coefficient
is higher than 0.1; and if the correlation is higher than 0.3, it is a
moderate correlation. Table 2 shows the correlation matrix between
the dialogue level of user satisfaction after dialogue annotations
and the average value of all exchange-level annotations. Compared
with the correlation between the third-party (topic continuance and
external sentiment) annotations on the exchange and dialogue-level
annotations, the self-sentiment annotations on the exchange had a
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higher correlation with dialogue-level annotations. We also found
that all exchange annotations were positively correlated with the
coordinateness and friendliness labels and negatively correlated
with the awkwardness labels. The self-sentiment annotation had
the highest correlation with the dialogue-level annotation.

However, we found that the correlation between exchange-level
labels and dialogue-level labels was not strong, indicating that
exchange-level annotation cannot accurately express user satisfac-
tion at the dialogue level. For this reason, it is necessary to recognize
user satisfaction at the dialogue level directly. In this study, the
exchange-level annotation feature was used as a manual feature to
identify the user’s satisfaction at the dialogue level. We analyzed
the exchange-level annotation feature results and compared them
with the multimodal results in Section 6.2.

4 MULTIMODAL USER SATISFACTION
MODELING

4.1 Multimodal feature extraction
4.1.1 Audio feature. This study extracted acoustic features at the
exchange level as the emotional information in speech by using
the speech feature extractor OPENSMILE [7]. The acoustic features
corresponded to the extended Geneva Minimalistic Acoustic Param-
eter Set (eGeMAPS), which achieves high performance in emotion-
related fields. These features were extracted for each speaker turn
and normalized by each speaker after extraction. Finally, we obtain
a 88 dimensions vector.

4.1.2 Linguistic feature. We extracted two types of linguistic fea-
tures from the manual transcription of spoken dialogue contents:
Part of speech: The sentences were segmented into words and
annotated with universal part-of-speech (POS) tags using Stanza
NLP 4. The PoS tag set was composed of 17 types: “adjective”,
“adposition”, “adverb”, “auxiliary”, “coordinating conjunction”, “de-
termine”, “interjection”, “noun”, “numeral”, “particle”, “pronoun”,
“proper noun”, “punctuation”, “subordinating conjunction”, “sym-
bol”, “verb”, “other”. The PoS categories (nouns, verbs, etc.) in a
user’s utterance were counted.
BERT (Bidirectional Encoder Representations from Transformers
[5]): In this study, we used a model pre-trained on only Japanese
text (using Wikipedia) [16]. We used this model to extract features
from the text at the exchange level, and finally, we obtained a 768-
dimensional text representation vector.

4.1.3 Visual feature. We extracted body activity and facial features
as visual features using an RGB camera and Kinect V2 with a depth
sensor.
Body activity features: This study used three-dimensional coor-
dinate data for each joint of the upper body, which was estimated
from a Microsoft Kinect v2, to extract motion features. We used
five points of body motion, which included the left shoulder, right
shoulder, left hand, right hand, and head. We denoted the three-
dimensional coordinate data of each body point at tth-frame as
w(t) = x ,y, z. We calculated the absolute value of velocity between
two frames as |v(t)| = |w(t + 1) −w(t)| and calculated the absolute
value of acceleration between frames as |a(t)| = |v(t) − v(t − 1)|.

4https://github.com/stanfordnlp/stanza

After v(t) and a(t) were calculated, we used the maximum value of
acceleration, and the maximum, mean, and standard deviation of
velocity in the user turn as body activity features. Finally, the body
activity feature set included 20 dimensions in total.
Facial landmark feature:OpenFace [1] software output the three
dimensional coordinates of 68 facial landmarks in each frame. This
study chose ten facial landmarks, including 2 points on each eye, 4
points around the mouth, and two on the eyebrows. We adopted
the same method used for body feature tracking. We extracted
the maximum acceleration value and the maximum, mean, and
standard deviation of the velocity for each user exchange turn as
facial features. Finally, we obtained a 40-dimensional vector.
Action units: Facial expressions display emotional states, which
help regulate turn-taking during the conversation. This is often rep-
resented using facial action units (AUs), which objectively describe
facial muscle activations [4]. In this study, we used OpenFace to ob-
tain 18 types of AUs which were rated between 0 and 1, indicating
absence and presence, respectively. Then we calculated the average
of each AU in exchange for facial AU features (18 dim). Overall, 58
dimensions of facial features were used in this study.

4.2 Models
To recognize the user satisfaction at dialogue level, a machine learn-
ing model needs to capture dynamical change in multimodal be-
haviors while the user is talking with the system. To model the
sequence of multimodal behaviors, we utilized the following three
sequence models; Recurrent neural network (RNN), long short term
memory (LSTM) and gated recurrent unit (GRU) models.

The multimodal features extracted from each exchange were
input to each unit of the RNN, LSTM, and GRU in the proposed
multimodal model. This study used the early fusion method and
the unimodal features (audio at : 88 dim., linguistic lt : 785 dim.,
and visual vt : 78 dim.) extracted from the t-th exchange were con-
catenated into one vector xt (951 dim.). The input of these recur-
rent neural network models was xt (1 ≤ t ≤ T ). In all models, a
two-recurrent (hidden) layers with 128 units (h(1)t , h

(2)
t ) are used

to extract the features from the sequence input vector xt with T
exchanges. We obtained two final hidden states h(1)T , h

(2)
T (2 (lay-

ers)*128 (units)) from the recurrent layers. A fully connected layer
followed the recurrent layer to project the output (2*128) from the
recurrent layers into the output layer. For a classification task, the
output layer containing two units and the log-SoftMax function
was used to output the probabilities of the different user satisfaction
Sc . For a regression task, the sigmoid unit was used to output the
estimated value Sr of the user satisfaction level (1-8).

5 EXPERIMENTS
The purpose of the experiments was to recognize user satisfaction
at the dialogue level. We evaluated the user satisfaction recognition
accuracy through both classification and regression tasks. Three
research questions were addressed, each of which corresponds to a
subsection in Section 6.
RQ1: Do multimodal features contribute to improving user satis-
faction recognition?
RQ2: Which is more effective in user satisfaction recognition mul-
timodal features or exchange-level annotation features?
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RQ3: Compared with human subjective perception, how does the
recognition of multimodal models perform?

5.1 Experimental setting
5.1.1 Regression task setting. The regression tasks aimed to fit the
labels of dialogue base on different feature sets. The mean squared
error (MSE) was calculated using the square of the difference be-
tween the actual and estimated values, which were then summed
and averaged. It was convenient to take the squared derivative of
the results. In this work, we used the MSE as the loss function for
all regression tasks.

5.1.2 Classification task setting. The binary classification datasets
were developed as follows. All dialogue-level label annotated scores
(1-8) were converted into binary values (high and low) with a thresh-
old of 4 (neutral state). The numbers of high/low data points for
the three target labels at dialogue level were 38/22 for the coordi-
nateness label, 32/28 for the awkwardness label, and 49/11 for the
friendliness label, respectively. We used the F1-score as a metric to
evaluate the accuracy of imbalanced datasets in which the number
of samples was different between the two classes.

5.1.3 Hyperparameter setting and evaluation. To evaluate the com-
parative models under equivalent conditions, we used the same
parameters in all models. We used the Adam optimizer, set the learn-
ing rate to 0.001, and set the total number of epochs to 30. Five-fold
cross-validation was conducted, and their average F1-score is re-
ported.

5.1.4 Combination of multimodal futures. According to the find-
ings in previous works, linguistic features were the key descriptors
in recognizing user satisfaction. For this reason, we set the uni-
modal model with a linguistic feature set as the baseline model. In
addition to the baseline model, we prepare four combinations of
unimodal features (audio, visual and linguistic) to analyze the effec-
tiveness of the verbal-nonverbal multimodal models and nonverbal
multimodal models (without linguistic features).
(1) L: model trained with Linguistic features (baseline)
(2) A+V: model trained with Acoustic + Visual features
(3) A+L: model trained with Acoustic + Linguistic features
(4) V+L: model trained with Visual + Linguistic features
(5) ALL:model trained with Acoustic + Visual + Linguistic features

5.2 Comparative methods
We prepared two human models as comparative methods with the
proposed multimodal models.

5.2.1 Human model (1) using exchange-level annotations. In this
group experiment, five experts annotated two labels (external sen-
timent and topic continuance) in each exchange turn with scores
ranging from 1 (the participants seemed bored with the dialogue)
to 7. For the external sentiment and topic continuance labels, the
averaged annotated scores were calculated per the t-th exchange
and then combined with the self-sentiment annotation at t-th ex-
change as manually annotated features total three dimensions
at (1 ≤ t ≤ T ). at is input features for the sequence models.
The network architecture is the same as the multimodal models
described in Section 4.2.

5.2.2 Human model (2) using subjective evaluation of Wizard. In the
second group experiment, the Wizard’s annotation was regarded
as the result of human recognition. For the classification meth-
ods, similar to the annotation procedure described in Section 5.1,
the Wizard’s annotation results were divided into high and low
satisfaction categories, then F1-score was calculated. For the regres-
sion, we computed the MSE of the Wizard’s annotations and user
annotations.

6 RESULTS
Tables 3 and 4 show the regression and binary classification results
of satisfaction label recognition by the RNN, LSTM, and GRU, re-
spectively, based on the five feature sets. In this section, first, we
compared both the regression performance: MSE and classification
F1-score of these models. Second, we compare the results of the
proposed multimodal models with that of the model trained with
the exchange-level annotation features. Finally, we compare the
performance of themultimodal models to that of the “humanmodel”
based on subjective evaluation by the Wizard.

6.1 Comparison between unimodal and
multimodal features (RQ1):

Columns 3 to 7 in Table 3 show the regression results: the MSE
values of user satisfaction labels generated by trainingwith different
multimodal feature sets.

We observed that the multimodal models yielded the best perfor-
mance for the coordinateness and awkwardness labels among all
models. The ALL feature set (A+V+L) and L+V feature set produced
the lowest MSE values (2.93 and 4.00) in the LSTM method for the
coordinateness and awkwardness labels. Most of the feature fusion
models (A+L and A+V) performed better in terms of MSE than
those using linguistic features. The unimodal set (L) achieved the
best result for the friendliness label, with an MSE of 2.87. For the
awkwardness label, L+V produced the lowest MSE for all methods.

Columns 3 to 7 in Table 4 present the F1-scores of the classifica-
tion of user satisfaction labels (except friendliness) generated by
training with different multimodal feature sets. Due to the imbal-
ance in the friendliness label (49/11), all models overfitted this label.
For the coordinateness dialogue label, in the LSTM and GRU meth-
ods, the ALL feature set (A+V+L) produced the best F1-scores (0.76
and 0.75) among all feature sets, and similarly, in the regression
task, for the awkwardness label, L+V yielded the best F1-score for
all methods.

6.2 Comparison between multimodal and
exchange-level-annotation features (RQ2):

Column 8 in Table 3 presents the regression results based on the
features of the exchange-level annotation (annotation features).
We report the lowest MSE of each label result for the annotation
features as follows. The MSE was 3.56 for the coordinateness label
with LSTM, 4.33 for awkwardness with the GRU, and 3.09 for the
friendliness with the LSTM. Although the performance of the an-
notation features was better in some cases, the multimodal feature
sets achieved the best performance considering all the results.

Column 8 in Table 4 shows the user satisfaction classification
results based on the annotation features. The results demonstrate
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Table 3: Regression results of eachmultimodal combination for three user satisfaction labels (Acoustic (A), Visual (V), Linguis-
tic (L), and Exchange annotation (Exchange An). The accuracy denotes themean squared error (MSE). The bold values indicate
the best MSE for the performance index.)

Proposed Human models
Labels Model L A+L A+V L+V ALL (1) Exchange An. (2) Wizard

RNN 3.66 3.14 3.28 4.18 3.56 3.66
Coordinateness LSTM 3.58 3.05 3.17 4.14 2.93 3.56 3.38

GRU 3.35 3.21 3.28 3.92 3.32 3.75
RNN 4.46 4.43 4.59 4.31 4.48 4.41

Awkwardness LSTM 4.58 4.63 4.58 4.00 4.54 4.44 5.70
GRU 4.57 4.52 4.52 4.22 4.34 4.33
RNN 2.87 3.23 3.26 3.14 3.45 3.13

Friendliness LSTM 2.88 3.06 3.29 3.03 3.13 3.09 4.15
GRU 3.02 3.25 3.28 2.87 3.14 3.32

Table 4: Binary classification F1-score of each multimodal combination of three user satisfaction labels (Acoustic (A), Visual
(V), Linguistic (L), and Exchange-level annotation (Exchange An). The bold values indicate the best F1-score)

Proposed Methood Human models
Labels Model L A+L A+V L+V ALL (1) Exchange An. (2) Wizard

RNN 0.67 0.72 0.73 0.71 0.72 0.61
Coordinateness LSTM 0.70 0.74 0.75 0.65 0.76 0.55 0.72

GRU 0.69 0.68 0.74 0.63 0.75 0.55
RNN 0.59 0.53 0.61 0.72 0.59 0.60

Awkwardness LSTM 0.66 0.58 0.61 0.68 0.63 0.54 0.58
GRU 0.58 0.62 0.56 0.63 0.61 0.56

that the RNN achieved the best performance for the coordinateness
dialogue label, with an F1-score of 0.61. All multimodal features per-
formed better than the annotation features for the coordinateness
label. Similar to the coordinateness label, the RNN achieved the best
performance (0.60) for the awkwardness label, which was better
than that obtained by the RNN method trained using the A+V+L
(0.59) feature set. For the other methods (LSTM and GRU), the mul-
timodal feature performance was better in all cases. Overall, the
results show that multimodal features can improve recognition per-
formance. In this evaluation, we used the two-layered RNN based
models for comparing models. However, the network architecture
is not optimized for the Human model (1) with the low dimensional
input (three dimensions), so the fair evaluation using the optimized
network architecture per each model is future work.

6.3 Comparison of human model and ML
models (RQ3):

Column 9 in Table 3 lists the regression results of the human model,
in which the Wizard estimated user satisfaction. For the coordi-
nateness label, the human model yielded an MSE of 3.38, which
was better than some feature sets (A, L+V) but worse than the best
result (2.93) achieved by LSTM. The regression results for the awk-
wardness and friendliness labels were worse than almost all ML
model results.

Column 9 in Table 4 shows the classification results of the human
model, in which theWizard estimated user satisfaction. For the clas-
sification task, we calculated the F1-scores of binary classifications

based on the annotations by the Wizard. Similar to the regression
results, the human model obtained a better F1-score (0.72) than
some feature sets (A, L+V) for the coordinateness label. In con-
trast, the result (0.76) of the LSTM model was higher than that of
the human annotator. Most ML models performed better than the
human models for the friendliness label. Overall, both regression
and the classification results indicate that the performance of the
multimodal model was higher than that of the human model.

7 DISCUSSION
7.1 Feature analysis
7.1.1 Contribution of each modality. To analyze the contribution
of each modality to three satisfaction labels on classification tasks.
We use ablation experiments, in which a GRU model was trained
by removing feature sets one by one. If the F1-score decreased,
the removed feature set was effective for the classification. On the
contrary, if the F1-score improved, the removed feature set was not
effective for classification. Table 5 shows the binary classification
recognition performance of the GRU model on user satisfaction
labels (except friendliness) trained with feature sets after each fea-
ture set was excluded. This table shows that the acoustic feature
set was the most effective (+0.12) for the coordinateness label. The
second most effective feature set was facial features (+0.10). The
linguistic features were less effective. The results indicated that
non-linguistic features performed better than linguistic features in
identifying the coordinateness label. For the awkwardness label, the
body features (+0.07) and linguistic features (+0.05) yielded better
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Table 5: Contribution of each modality feature to two labels
in GRU (Diff denotes the difference in F1-scores for cases in
which a specific modality was removed)

Modality Label
ALL (A+V+L) Coordinateness Awkwardness

0.75 0.61
Remove modality F1 Diff F1 Diff

Acoustic 0.63 0.12 0.63 -0.02
Facial 0.71 0.04 0.61 0.00

Action Unit 0.68 0.07 0.60 -0.01
Body 0.77 -0.02 0.54 0.07

Linguistic 0.74 0.01 0.56 0.05

Figure 3: Confusion matrix of the binary classification task
for the awkwardness label (ML models: LSTM regression re-
sult using the L+V feature set), and human model (annota-
tion by the Wizard))

values, which means that body motion and linguistic features were
effective in recognizing the awkwardness label. The acoustic fea-
tures were less effective. For the friendliness label, the model with
linguistic features achieved a better performance than the model
with multimodal features (refer to Table 3). The results demonstrate
that linguistic features can improve the performance more than
other modality features. However, the difference is 0.12 in the max-
imum case, and the difference is not significant, so analyzing the
specific features or frames in the sequence data, which significantly
improves accuracy, is essential for future work.

7.1.2 Comparison between unimodal and multimodal. For the coor-
dinateness and awkwardness labels, the recognition performance
was improved with multimodal features. For the friendliness la-
bel, the difference in accuracy between the unimodal and the best
multimodal models was insignificant (refer to Tables 3 and 5). We
analyzed the results of Section 6.1 and the ablation experiments. For
the coordinateness label, communication is a cooperative activity
involving coordinated behaviors [19]. Participants in conversation
spontaneously adjust facial expressions, postures, pronunciation
and speech rates [3, 20, 21]. In this study, the multimodal fusion
set (ALL) produced a better performance for the coordinateness
label. For the awkwardness label, participants show a very negative
attitude when they are embarrassed in dialogue with the agent.
They do not often physically express their feelings and communi-
cate with the agent. At the same time, the degree of embarrassment
has an important relationship with the participation attitude in the

dialogue. Body features were the most effective (refer to Table 5).
The result partially aligned to the finding that body features (hand
and head movements) are closely related to embarrassment[15].
For the friendliness label, the linguistic feature achieved a better
performance in most cases in this study.

7.2 Comparison between Multimodal
recognition and human perception

As shown in Section 6.3, we found that the performance of our pro-
posed model was better than that of the humanmodel (2). To further
analyze the difference in accuracy between the human model and
ML models, we evaluated the regression accuracy of 60 partici-
pants for the awkwardness label with the LSTM model using 5-fold
cross-validation. In this study, we divided the regression values into
binary values (high and low).We considered the threshold of 4.5 due
to the regression result is continuous values. The evaluation using
other threshold values is set as future work. To observe the overall
classification, we calculated the confusion matrix of the machine
and human (Wizard) scores. As shown in Figure 3, the recognition
performance of the ML models was better than that of the human
model for the high and low awkwardness labels. However, both the
ML and human models showed false low-level recognition results
(true high embarrassment was mistaken for low embarrassment),
accounting for 31 % and 28 % of the total samples, respectively.
This result suggests that both humans and machines have difficulty
identifying high participant awkwardness at the dialogue level. In
addition, compared to other labels, the regression MSE result for
the awkwardness label was larger (refer to Table 3).

8 CONCLUSIONS
This paper proposed a multimodal user satisfaction recognition
model suitable for evaluating non-task oriented dialogue systems
at the dialog level by utilizing a novel multimodal user-system
dialogue data corpus. To consider the contextual information in
the dialogue, LSTM, RNN, and GRU structures were applied in
this study. The results of the three different models indicated that
multimodal features achieved a better performance than unimodal
features, exchange annotation, and human models in user satisfac-
tion recognition, which shows that our proposed model is reliable
for identifying user satisfaction at the dialogue level. However,
there is still room for improvement in multimodal user satisfaction.
In this study, the feature vectors of different modalities were con-
catenated into one feature vector and used for training. In future
work, we will focus on integrating multiple features better to im-
prove the performance in these tasks and investigate the relevance
of specific multimodal features in user satisfaction recognition.
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